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Abstract

Simulating the physical behavior of thin multi-layered structures accurately is central to micro-electro-mechanical

systems (MEMS) CAD. We have produced an automatic method with which to simulate the structural response of

multi-layer plate and beam micro-structures accurately and reliably. The method also covers thermo-mechanical and

piezoelectric effects. We use a Kirchhoff–Love thin structure model implemented as a conforming Argyris finite element

suited for the calculation of thermo-mechanical membrane and bending behavior and which is extended to simulate

piezoelectric effects in thin structures. For the first time a posteriori estimation is presented for such multi-layered multi-

physically active thin structures. Different sources of errors are identified and specified for several usecases. The error

analysis covers locally prestressed regions, plate composition inhomogeneities, geometrical singularities, and singu-

larities conditional upon the presence of source functions of various types. Together with a refinement strategy and a

geometrical split pattern the efficiency of the method is demonstrated. Local mesh refinement guarantees the compu-

tation of the most accurate solution at a minimum of computational costs.
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1. Introduction

Thin structures are central to micro-electro-mechanical systems (MEMS). Sensors and actuators that

constitute MEMS are transducers of signals between different physical energy domains. The transformation

therefore involves coupled field effects of which thermo-mechanical and piezoelectric effects are currently

among the most important. These effects can be modeled using a thermodynamic approach.

The most frequently used geometries are beam or membrane-like [1]. This requires that the models be

reduced to a dimensionality that properly describes the physical behavior of membrane like devices. To
accurately simulate such thin structures, we have developed an accurate and stable Kirchhoff–Love (KL)
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multi-layer plate model implemented as an Argyris finite element [2]. Primarily targeted for MEMS de-

signers, the model enables functional optimization at an early stage of device development, saving re-

sources. The model also encompasses effects that are crucial to the functionality of MEMS.
By extending the primarily mechanical Kirchhoff–Love plate model, first to thermal effects and then to

piezoelectric effects, we are able to simulate a wide range of typical MEMS behavior. Hierarchically, the

model allows us to simulate thin structure behavior starting from structural mechanics to effects comprising

more complex coupling effects. The basic plate model considers the bending field of thin structures only.

But since multi-functional thin structures generally consist of several layers the coupling of the membrane

field to the bending field also has to be taken into account. This is done by extending the bending equations

by the in-plane or membrane field terms. Only in the rare case that the material stacks are perfectly

symmetric to the plate�s midplane do the in-plane and the out-of-plane displacement fields act indepen-
dently.

When adding thermal effects by means of a temperature field, there is the option to only consider the

bending field or one can choose to couple the temperature field to both the horizontal and the vertical

displacement fields. Of course, the choice depends on the specification of boundary conditions. Addi-

tionally, the presence of multiple layers within the structure requires the horizontal field to be considered. In

our model we only allow for thermal effects in the horizontal direction, neglecting transverse thermal effects.

The temperature field therefore can be interpolated on the same elements as the mechanical field. We would

like to point out that interlaminar stresses generated by the coefficients of thermal expansion mismatch are
not considered in this model. Such stresses are the cause of fracture failure in many MEMS components

and in order to cover these correctly a full 3D simulation would become necessary.

Three-dimensional effects are critical for piezoelectric devices, too. The driving and sensing mechanisms

of piezoelectrically actuated thin structures are given according to the direct and indirect piezoelectric effect.

In the first case the application of a mechanical stress or deformation in absence of an electrical field

generates an electrical moment. Conversely, the presence of an electrical field causes the crystal to deform.

For thin structures this evidently means that the 2D plate geometry has to be extended in the vertical

direction if not only the membrane field shall be considered. Allowing a non-zero component of the
electrical field in vertical direction then permits interaction of the bending field and the electrical field either

in the direct or indirect way without changing the dimensionality of the displacement fields. This is done by

combining the 2D mechanical triangles with 3D electrical prisms. We hereby particularly provide for the

case where a piezoelectric layer within the thin structure is driven by different voltages applied on

the bottom and on the structure�s top layer. Obviously, piezoelectrically active devices require that both the

membrane field and the bending field are taken into account since these thin structures generally are multi-

layered. Limitations to this model are discussed in detail in Section 3.

The well-known drawback when using the highly sophisticated conforming approach to the Kirchhoff–
Love model is the increase of computational cost. All the more this is the case when considering the dif-

ferent coupling effects. In order to reduce these computational expenses we have applied mesh adaptive

techniques. By using this method, not only can computational resources be saved, but also the numerical

accuracy can be improved. Building upon the pioneer works [3–6] many adaptive finite element techniques

for various systems of PDEs have been reported, among them [7] for elliptic systems and [8] for parabolic

systems. A recent summary of existing error estimation techniques can be found in the book of Ainsworth

and Oden [9].

A posteriori error estimation and mesh refinement techniques proved to be efficient numerical tools for
applications in mechanics [10] or solidification processes [11]. For the thin plate problems one usually refers

to the classical Zienkiewicz paper [12], such as, e.g. [13]. These papers focus on the treatment of the Re-

issner–Mindlin type plate, a model presumed to be much more easier for use in engineering practice, an

assumption that still is widely discussed. Different viewpoints on which plate model should be favored can

be found in [14–22].
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For the Kirchhoff–Love model, to our knowledge, adaptive finite element procedures have only been

discussed in [7]. In the latter monograph, a posteriori error estimation, the core business when doing

adaptive finite elements, is given for a very much simplified plate model equation, namely the bi-Laplacian
equation without considering material properties. Neither does this equation represent different material

behavior sufficiently when transformed into the weak or variational form, since hereby the plate is assumed

to consist of a mono-layered single and homogenous isotropic material, nor does it allow for the treatment

of multi-layer structures. These are too restrictive assumptions to be used in general purpose software

suitable for MEMS simulation.

We therefore have derived error estimators at first comprising different materials present within a plate

structure [23]. We have then extended the methods to multi-layered multi-material thin structures, hereby

taking into account the coupling behavior of the horizontal and the vertical field for multi-layers, such as,
e.g., the most representative, the bimorph. Then the method has been extended to thermo-mechanical and

piezoelectric coupling that give rise to another set of sources of error. In this paper we are going to present

the techniques of how to derive these errors. Together with adaptive mesh refinement techniques we are

going to demonstrate how to efficiently reduce computational costs and at the same time control the error

of the numerical solutions. The purpose of controlling the numerical accuracy is to find, for a given choice

of finite element (FE) model, i.e., a geometry and a load case, an adapted mesh whose size and compu-

tational error is simultaneously reduced to a minimum. Adaptive meshing requires:

• A method to quantify the error: We obtain local error estimates by applying residual techniques [7]. We
start from the weak form of the plate equations and derive an error estimator in an energy norm of the

mechanical problem. We consider error contributions due to the incompatibility between element inter-

nal loads (stresses) and the applied loads. Furthermore, we consider contributions due to shear force,

twisting couple and bending moment jumps along inter-element edges for the out-of-plane displacement

field. For the in-plane displacement we consider contributions from stress couple jumps along element

edges. When taking into account the coupling of the mechanical field to either the temperature field

or the electric field by means of piezoelectric effects, additional error sources have to be considered.

By combining these contributions consistently, we obtain a reliable and effective element error estimator.
• A mesh refinement strategy: We use a ‘‘maximum’’ mesh refinement strategy [7]. Those elements are

marked to be refined where the weighted element error estimator exceeds the maximum of all individual

element error estimator terms.

• A mesh splitting method: The refinement process is performed in a way that is governed by the need

to preserve shape regularity and to avoid ‘‘hanging nodes’’. We use a recursive algorithm, for

meshes of triangular finite elements, which is based on the longest edge bisection [24]. Only a finite

number of different angles occur during the refinement process and therefore long, thin triangles are

avoided.
The paper is organized around these three requirements. Starting with a thermodynamic approach, we

develop in Section 2 a variational form of the Kirchhoff–Love plate theory, which we discretize in Section 3

using the Argyris plate element and an appropriate extension for the piezoelectric plate problem. In Section

4 we describe the mesh adaptivity algorithm. In Section 5 we develop the theory for a posteriori error

estimation based on the finite element residual, and apply this to the plate discretization. The result is a

complete set of element-based (local) contributions that together form the error estimator for the plate

element comprising thermal and piezoelectric coupling. In Section 6 we discuss the refinement strategy that

we have used, together with the element splitting method to perform mesh modifications locally. We
demonstrate the technique, first, by giving a validation of the methods in 7 and with some applications from

microsystem technology in Section 8, and summarize our results in the last section. Appendix A recapit-

ulates the most frequently used mathematical and notational conventions that we have used throughout

this paper and Appendix B summarizes how the material properties have to be reduced to appropriately

describe our thin structure model.
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2. Modeling multi-layered thin structures

Many mechanical microsystem components are plate-like or beam-like. They are obtained from semi-
conductor integrated-circuit manufacturing processes as multi-layer sandwiches. The components� func-
tionalities consist of converting effects from different energy domains. These include effects from the

thermal, electrical and the mechanical domains. In this section we outline the main steps in deriving the

model.

2.1. Electro-thermo-mechanics

When considering thermodynamically irreversible changes of states we may introduce a set of properties
of solids. That is to say, we discuss properties that may be measured with the crystal in equilibrium with its

surroundings, so that neither the state of the crystal nor that of its surroundings changes with time. The

quantities we shall be concerned with are the temperature T , the electrical field E and the mechanical stress

r. The electrical field can be expressed as the gradient of some electrostatic potential, E ¼ �r/. The free

energy density F̂ then depends on the temperature, the strain and the electrical field

F̂ ¼ F̂ ðT ; r;EÞ: ð1Þ

The differential form for F̂ then reads

dF̂ ¼ �Ŝ dT �D � dE þ r � d�; ð2Þ

where Ŝ is the entropy density and D is the electrical displacement. The total linear differential of the in-

dependent variables ð�;E; T Þ, the strain, the electrical field and the temperature, can be expressed as [25]

drij ¼
orij

o�kl

� �elasticity

E;T

d�kl þ
orij

oEk

� �inverse piezoelectricity

�;T

dEk þ
orij

oT

� �thermal expansion

�;E

dT ;

dDi ¼
orij

o�kl

� �direct piezoelectricity

E;T

d�kl þ
oDi

oEj

� �permittivity

�;T

dEj þ
oDi

oT

� �pyroelctricity

�;E

dT ;

dŜ ¼ oŜ
o�ij

 !piezocaloric effect

E;T

d�ij þ
oŜ
oEi

 !electrocaloric effect

�;T

dEi þ
oŜ
oT

 !heat capacity

�;E

dT :

ð3Þ

This is a total of 13 equations, each index ranging from 1 to 3. Each of the differential coefficients

represents the dependence of the thermodynamic state variables and therefore describes a physical effect.

Including higher order derivatives than the linear ones would give rise to additional effects, such as electro-

optical effects (non-linear optics), piezo-optical effects such as electrostriction or even elastic moduli of

higher order. The coefficients on the leading diagonal of the equations measure the principal effects while

the others measure the coupled effects. When deriving symmetries of the coefficients representing the

various effects we refer to Eq. (2) which can be rewritten as

dF̂ ¼ oF̂
oT

 !
�;E

dT þ oF̂
oEi

 !
�;T

dEi þ
oF̂
o�ij

 !
�;T

d�ij: ð4Þ

Exploiting the second derivatives of the free energy density provides the Maxwell relations which represent

the coupling of the different fields. We use ðpijkÞ ¼ p for the piezoelectric tensor, ðCijklÞ ¼ C for the elasticity
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tensor, ðaijÞ ¼ a for the thermal expansion tensor, ðpiÞ ¼ p for the pyroelectric tensor, ðvijÞ ¼ v for the

dielectric permittivity and C� for the heat capacity at constant strain. The constitutive relations now can be

displayed as the integrated form of (3)

rij ¼ Cijkl�ij � pkijEk þ aijDT ;

Di ¼ pijk�jk � vijEj þ piDT ;

Ŝ ¼ �aij�ij � piEi þ ðC�=T ÞDT ;
ð5Þ

where we have taken into account that changes of states and thus of the variables representing them are
dependent on the temperature only in case a temperature change occurs. When introducing the differential

balance equations, the following coupled partial differential equations can be obtained:

r � ðC : �� pT : E þ aDT Þ ¼ f 3D;

r � ðp : �� vT � E þ pDT Þ ¼ q;

r � ð�j � rT Þ ¼ f :

ð6Þ

The first equation is the conservation of the momentum and f 3D is a 3D body force. The second equation is

known as the electrostatic Gauss law where q is some spatially distributed charge density. The last equation

is derived by using Fourier�s law of heat conduction which is assumed to be stationary. The symbol f
denotes some spatially distributed heat source. The linear strain can be expressed in terms of the mechanical

displacement, u ¼ u3D,

�ij ¼
1

2

oui
oxj

�
þ ouj

oxi

�
¼ ðruÞSij; ð7Þ

S denoting the symmetrization operator, see Appendix A.

2.2. Multi-layered Kirchhoff–Love plates

As a starting point for the derivation of a plate model, we take the weak formulation of 3D mechan-

ics, electrostatics and heat transfer. Multiplication of each of the PDEs (6) with an admissible test func-
tion, i.e. a test function that is zero on the essential part of the boundary, and integrating them partially

yields

ðr3D; d�3DÞ ¼ ðf 3D; du3DÞ þ ðf S ; du3DÞoXmech
;

ðD;rwÞ ¼ ðq;wÞ þ ðh;wÞoXel
;

ðj � rT ;rSÞ ¼ ðf ; SÞ þ ðj; SÞoXtherm
:

ð8Þ

The test functions or variational functions from top to bottom are: the 3D variational strain d�3D, the
variation of the electrostatic potential w ¼ d/ and the variation of the temperature field S ¼ dT . On the

right-hand side (RHS), we include the effects of the impressed spatial sources and the boundary conditions

for the different energy domains. These consist of a prescribed surface traction f S on a part of the

boundary, prescribed dielectric displacement h and some boundary heat flux j. Our plate models are ob-

tained as the asymptotic case for one of the dimensions of the solid vanishing. We are describing the 3D
geometry of the plate as in Fig. 1, or

X ¼ X3D ¼ x� ½�h=2; h=2� ¼ fðx; zÞ=x 2 x;�h=26 z6 h=2g: ð9Þ
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Fig. 1. The 3D geometry of a plate.
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The L2-product for an arbitrary pair of fields u,v on the solid plate is decomposed as

ðu; vÞ3D ¼
Z h=2

�h=2
ðu; vÞx dz: ð10Þ

Henceforth, the subscript for the inner product and the integration extrema shall be omitted where there is

no ambiguity. The boundary of the solid plate is decomposed as

oX ¼ oX3D ¼ x� f�h=2g [ x� fh=2g [ ox� ½�h=2; h=2�; ð11Þ

i.e., into its lower and upper planes and its perimeter wall. For any tensor field Aðx; zÞ defined on the solid

plate, we define its nth order moment by

AnðxÞ ¼
Z

znAðx; zÞdz: ð12Þ

In the Kirchhoff–Love theory [26–28], the transverse displacement w is kept constant across the thickness
and the in-plane displacement is taken with a linear dependency on z. Additionally, it is necessary to satisfy

the constraint that the coefficient of z be the opposite of the gradient of w, expressing the geometrical

statement that lines normal to the middle plane keep their orthogonality in the deformed state. The ansatz

for the 3D displacement is

u3D ¼ uðxÞ � zrwðxÞ
wðxÞ

� �
; ð13Þ

where x ¼ ðx; yÞ are the 2D-coordinates.

We now impose the additional condition that the elastic reaction vanishes in the transverse direction of

the plate. This implies that only the in-plane components of the stress can be different from zero, so that we

may write that

u3D ¼ r 0

0 0

� �
: ð14Þ

The reduced 2D constitutive relation then reads

r ¼ Â : �� p̂T : E þ âDT ; ð15Þ

where Â; p̂; â are the reduced elastic, piezoelectric and thermal conductivity tensors, see Appendix B. The
2D strain can be expressed in terms of the in-plane displacement field and the out-of-plane displacement

field

� ¼ ðruÞS � zrrw; ð16Þ
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the latter is also called the plate�s bending field. Its variation will be denoted as

d� ¼ ðrvÞS � zrrv: ð17Þ

When inserting these relations into the first of Eqs. (8), integration across the thickness of the structures

yields the moments (12) of the material tensors and the remaining integrations takes place within the 2D
midplane of the structure:

ðr3D; d�3DÞ ¼ ðÂ0 : ðruÞS � Â1 : rrwþ ðp̂T � r/Þ0 þ ðâDT Þ0; ðrvÞSÞ
� ðÂ1 : ðruÞS � Â2 : rrwþ ðp̂T � r/Þ1 þ ðâDT Þ1;rrvÞ

¼ ðf 0; vÞ � ðf 1;rvÞ þ ðg0; vÞ þ ðM;rvÞoxbend
þ ðF ; vÞoxshear

: ð18Þ

The body force f 3D has been decomposed into the horizontal field f and the vertical field g. The symbolsM,
F denote the bending moments and the shear forces that may be specified on a part of the boundary. The

second equation of the system (8) can be rewritten when inserting the relation (16) such that

ðp̂ : ðruÞS � zp̂ : rrw� v̂ � r/;rwÞX ¼ ðq;wÞX þ ðh;wÞoXel
ð19Þ

holds, having neglected pyroelectric effects. The last equation of the system (8) for the reduced plate model

reads

ðĵ0 � rT ;rSÞx ¼ ðf0; SÞx þ ðj0; SÞx: ð20Þ

Eqs. (18) and (19) form the electro-mechanical part of coupled thermo-piezoelectric system for multi-

layered thin plates. Approximation of the solution of the system by means of an appropriate finite element

method has to be done simultaneously for the electrical potential / and the displacement field ðu;wÞ. This is
not the case for the temperature field T . The entire system can be solved by first computing the temperature

field by means of (20) and inserting the result into (18) and (19). We shall point out that the terms

âDT ¼ rext ð21Þ

could alternatively be interpreted as some external prestress which may have been caused by the fabrication

process of the thin layer.
3. FE-discretization of the coupled multi-layered plate equations

When discretizing the variational problems (18)–(20) one has to bear in mind that in contrast to Eqs. (18)

and (20), Eq. (19) has to be discretized on the full 3D domain X. Hereby the model allows that different

electrostatic boundary conditions be specified on the top and the bottom of the layer-stack. This would not

be possible if we also had reduced this equation to the 2D case. Inspecting Eq. (18) shows that, because of

the term ðÂ2 : rrw;rrvÞ, the transverse displacement requires that second derivatives also must be

square integrable, i.e. w 2 H 2ðxÞ, where H 2ðxÞ is the Sobolev space of order two, see Appendix A. In order

to have a conforming discretization, the shape functions must also be elements of H 2ðxÞ, requiring that the

shape functions have to be of class C1ðxÞ. This can be achieved by implementing the Argyris element
[29,30], see Fig. 2.

A vast literature has flourished suggesting several methods to overcome difficulties that are present when

using these elements. One of the possible ways would be to utilize the Reissner–Mindlin (RM) (thick-) plate

model which only requires C0ðxÞ� elements and therefore is easier to implement. Several sources suggest

that the RM model in a number of cases more adequately reflects the physical behavior [31] of thin

structures and also when it comes to the reproduction of boundary layers [32,33]. Another way would be to
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Fig. 2. The Argyris element.
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employ one of the non-conforming approaches that have been proposed for the KL model which require
that additional steps, undesirable for the use in general purpose software, have to been taken in order to

reproduce the solution expected in the thin-plate limit.

Therefore, when using the more sophisticated finite elements of class C1 a higher degree of reliability of

the simulated results can be expected. Additionally, a conforming ansatz for this model has the advantage

that error estimators are much simpler to formulate and thus adaptive computations are much faster and

more effective in terms of memory requirement. This is in direct contrast to the supposedly efficient non-

conforming approaches where the treatment of consistency errors becomes necessary [7,16].

To simultaneously compute the electrical field on a 3D domain and the mechanical and the temperature
field on a 2D domain we use a combination of a six-noded prism and an Argyris triangle, see Fig. 3. Since

the plate model allows for the treatment of multi-layer stacks we make the arrangement that for a given

composite multi-layer the prism�s electrical nodes are located in the planes defining both the top and the

bottom surface of the structure. The height of all prisms is determined by the largest stack extension present

within the multi-layer plate. The nodes for the electrical field for that largest stack then coincide with its

vertical margins.

A hypothetical 2D interpolation scheme for the potential would fail either in guaranteeing a continuous

solution across the plate or in admitting different potential on the lower and upper faces. On the other
hand, limitations to this model clearly are that effects that vary across the thickness other than linearly can

not be covered by this approach. This is due to the fact that the values of the electrical field are interpolated

only at the upper and lower surface of the structure. Employing this mixed-dimensional approach has the

further advantage that linear system condition numbers are kept small as compared to a full 3D approach.

Additionally, utilizing a full 3D discretization of the domain, in order to cover both the electric, the me-

chanical and their coupling effects would require that each layer of the structure be discretized separately,

worsening the condition of the linear system even further.
Interpolation of electrical potentialArgyris triangle

Fig. 3. The combined prism and Argyris triangle finite element. An Argyris triangle is placed exactly on the half way through the

thickness of the structure. The electrical field is interpolated between the outmost vertical ends of the structure and thus allows for the

specification of boundary conditions that differ at either the top or the bottom of the structure.
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4. h-adaptive FE-methods

The general idea of adaptive FE-methods is to obtain a numerical solution, within a prescribed toler-
ance, for a minimum of effort expressed in terms of computer storage and computational time needed by

the computing device on hand. As is well known, the solution accuracy of variational boundary value

problems (VBVPs) can be improved by either increasing the polynomial degree of the ansatz-space or by

increasing the number of elements, i.e., reducing the size of the geometric elements in terms of the mesh-

parameter h, which is equal to the element diameter. A major difficulty when using higher order polyno-

mials in the ansatz is that one has to take care of continuity requirements of the secondary fields which are

related to the primary fields in terms of their derivatives. More precisely, when interpolating a temperature

field on a composite material with Hermitian C1-elements the thermal fluxes (the gradient of the temper-
ature field contracted with the thermal conductivity tensor) will be discontinuous across material interfaces.

The h-adaptive method categorically avoids these difficulties by keeping the initial ansatz-space order but

increases the number of elements by locally refining the computational mesh geometrically. The main tools

for this purpose are:

• A posteriori error estimators, which give global and local information on the error of the numerical

solution.

• Refinement strategies, used to decide on which regions to refine. The strategies are usually based on an

evaluation of local error information.
• A geometric method, which specifies how a given region in a mesh is to be refined.

A selective measure would be to refine the discretization near critical regions by adding grid points to areas

where the solution is less regular. The question then is: how to identify these regions, and how to keep a

good balance between refined and unrefined regions, such that the overall accuracy is optimal. In con-

junction with an a posteriori error estimator, an adaptive mesh-refinement process for time independent

problems performs the following general steps [7,34]:

1. Construct an initial coarse mesh S0 of finite elements that represents sufficiently well the geometry of the

problem. Put the iteration counter k ¼ 0.
2. Solve the discrete problem on Sk.
3. For each finite element T in Sk, compute an a posteriori error estimate.

4. If the estimated global error is sufficiently small, then stop. Otherwise, decide which elements have to be

refined and construct the next mesh Skþ1. Increment the counter k by one and return to step 2.
5. Error analysis for coupled thin-structure FE-problems

For a given FE-problem, in general, the only data available to the analyst, that can give some indication

of the error, is the approximate solution itself. Thus, the challenge is to obtain an a posteriori estimate of

the error, i.e., after the initial approximate solution has been obtained. In other words, one has to find an

upper bound bu for the error

jku� uhkj6 bu; ð22Þ

where jk � kj denotes an energy norm which is defined via the bilinear form a,

jkwkj ¼ aðw;wÞ1=2: ð23Þ

The space X in which the weak or variational solution of the problem is sought can be associated with its
dual X � by means of the linear differential operator L of even order 2m,
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L : X ! X �; Lu ¼ f : ð24Þ

It turns out that X has to be defined as some Sobolev space or the product space of Sobolev spaces of
appropriate order. The bilinear form then can be defined directly by the operator L such that

ðLw; vÞ ¼ aðw; vÞ 8w; v 2 X ð25Þ

holds. The existence of the solution of the VBVP is closely connected to two crucial properties of the bi-

linear form a, namely that it be continuous and elliptic. These properties will enable us to deal with the

different norms in a straightforward manner: the norm in the solution Sobolev space k � kX and the energy

norm then are equivalent,

akvk2X 6 aðv; vÞ ¼ jkvkj2 6Kkvk2X ; ð26Þ

where K and a are the continuity and the ellipticity constant, respectively. The continuous VBVP then can

be formulated in the following way: for a given source function f 2 X � we are looking for the solution u in

X such that

aðu; vÞ ¼ ðf ; vÞ 8v 2 X : ð27Þ

The existence and uniqueness of solutions are then assured by functional analytical results such as the

Lax–Milgram theorem, using the continuity and the ellipticity of the bilinear form a. The essential (or
Dirichlet) BCs in the following are assumed to vanish identically. This is not a real constraint since any

problem with inhomogenous essential BCs can be easily reduced to one with homogenous BCs. Discretizing

the problem (27) means choosing a finite-dimensional subspace Xh of X , and looking for an uh in Xh

where

aðuh; vhÞ ¼ ðf ; vhÞ 8vh 2 Xh: ð28Þ

This formulation of the FE-problem is the basis of the following abstract a posteriori error analysis. When

rewriting (27) with u� uh instead of u we have for any v 2 X by virtue of (25) and the differential equation

(24)

aðu� uh; vÞ ¼ ðLðu� uhÞ; vÞ ¼ ðf � Luh; vÞ: ð29Þ

For any w 6¼ 0, we can write

jkwkj ¼ 1

jkwkj jkwkj
2 ¼ 1

jkwkj aðw;wÞ ¼ a w;
w

jkwkj

� �
6 sup

v2X ;jkvkj¼1

aðw; vÞ: ð30Þ

Combining the last equations (32) and (30) yields the estimate

jku� uhkj6 sup
v2X ;jkvkj¼1

aðu� uh; vÞ ¼ sup
v2X ;jkvkj¼1

ðf � Luh; vÞ: ð31Þ

Inequality (31) is an abstract a posteriori error estimator: only known data are required to compute an

upper bound for the error u� uh in the energy norm. The term f � Luh defines the residual of the strong

form of the partial differential equation. Depending on the shape of the differential operator L we establish

computable expressions for the error bound (31). By choosing a Poisson-type equation as in the third of

Eqs. (6) to derive an error estimator we gain insight into the mathematical technique without demanding

too much formal expenses as it would be the case for the rather complicated coupled plate equations. Later
then we are able to treat the plate case just by drawing analogies to the steps which allow of it. We introduce

the weak form of a general Poisson problem
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aðu; vÞ ¼
Z
x
ru � j � rvdx ¼ ð~f ; vÞ � ðf ; vÞ þ

Z
CN

jNvdC 8v 2 X ; ð32Þ

where x is a bounded domain with polygonal boundary. The part of the boundary where essential
boundary conditions are specified is expected to be non-empty whereas normal fluxes jN across the domain

border are specified on the part of the boundary which is denoted as CN . Discretizing the domain by means

of an admissible subdivision into triangles we can state the finite element problem as

aðuh; vhÞ ¼
Z
x
fvh dxþ

Z
CN

jNvdC 8vh 2 Xh; ð33Þ

assuming that given sources coincide with their interpolations, in other words,

f ¼ fh and jN ¼ jN ;h: ð34Þ

The space where the solutions of (31) and (33) have to be sought for in this case are X ¼ H 1ðxÞ and a finite-
dimensional subspace Xh � H 1ðxÞ of that Sobolev space. Additionally, we introduce the jump of some

function w along an edge E of the triangulation by

½wðxÞ� ¼ lim
d!0

wðx
�

þ dnCÞ � wðx� dnCÞ
�
; ð35Þ

where nC is a fixed outward normal of a given triangle�s edge. The scalar product on the RHS of (31) can be

recast as (~f includes the combined forces of (33))

ð~f � Luh; vÞ ¼ ð~f � Luh; v� vhÞ ð36Þ

since Xh � X and thus the error is orthogonal to Xh, see [29]. Making use of the definition of L in (25) and

the definition of a in (32) together with partial integration turns (36) into

ð~f � Luh; v� vhÞ ¼ ð~f ; v� vhÞ � aðuh; v� vhÞ ¼ ð~f ; v� vhÞ �
Z
x
ruh � j � rðv� vhÞdx: ð37Þ

The reason for having introduced the term v� vh instead of v is the fact that we intend to estimate the

interpolation error v� vh in the energy norm which is stronger than the L2-norm. Partial integration and

domain decomposition S, �x ¼
S

T2S T ; then yields the expression

ð~f � Luh; v� vhÞ ¼ ð~f ; v� vhÞ �
X
T2S

Z
T
r � j � ruhðv

 
� vhÞdxþ

Z
oT
n � j � ruhðv� vhÞdoT

!
: ð38Þ

Using definition (32) and taking into account that integration over edges E in the domain interior occurs

twice the above equation becomes

ð~f � Luh; v� vhÞ ¼
X
T2S

Z
T
ðf

 
þr � j � ruhÞðv� vhÞdxþ

X
E2oT\x

1

2

Z
E
½nE � j � ruh�ðv� vhÞdC

þ
X

E2oT\CN

Z
E
jN � nE � j � ruhðv� vhÞdC

!
: ð39Þ
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Applying the Cauchy–Schwarz inequality yields

ð~f � Luh; v� vhÞ6
X
T2S

kf
 

þr � j � ruhkL2ðTÞkv� vhkL2ðTÞ þ
X

E2oT\x

1

2
k½nE � j � ruh�kL2ðEÞkv� vhkL2ðEÞ

þ
X

E2oT\CN

kjN � nE � j � ruhkL2ðEÞkv� vhkL2ðEÞ

!
: ð40Þ

We now have to introduce estimates for the terms

kv� vhkL2ðTÞ and kv� vhkL2ðEÞ; ð41Þ

where vh denotes some interpolant. As a first difficulty we have already mentioned that the interpolation

error has to be estimated in a stronger norm than in the L2-norm due to (31) which means that also de-

rivatives of the error have to be measured. Moreover, we have to cope with the fact that functions in H 1 are

not necessarily continuous so that the usual Lagrange interpolation is not valid: pointwise evaluation does

not make sense anymore for a field with possible singularities which may very well occur in Sobolev spaces.

We avoid this by introducing a special interpolation operator Ih named after Cl�ement [35]. Setting vh ¼ Ihv
we then have the following interpolation estimates:

kv� vhkL2ðTÞ 6 chTkrvkL2ðxT Þ ð42Þ

and

kv� vhkL2ðEÞ 6 ch1=2T krvkL2ðxEÞ; ð43Þ

where c denotes some constant and xT the patch of all triangles whose intersection with T is non-empty as

sketched in Fig. 4.
Applying these estimates to (40) and making use of the Cauchy–Schwarz inequality once more yields

ð~f � Luh; vÞ2 6 c
X
T2S

 
kf :

 
þr � j � ruhk2L2ðTÞh2T þ

X
E2S;E�x

1

4
k½nE � j � ruh�k2L2ðEÞhE

þ
X

E2S;E�CN

kjN � nE � j � ruhk2L2ðEÞhE

!!
krvk2L2ðxÞ; ð44Þ

where hT; hE denote the triangle diameter and the edge length, respectively. We also have used thatX
T2S

krvk2L2ðxT Þ þ
X

E� x[CN

� � krvk2L2ðxEÞ 6 ckrvk2L2ðxÞ: ð45Þ
T E

ωT T '
T T '∩ ∅≠

∪= ωE T '
E T '∩ ∅≠

∪=

Fig. 4. The domains xT and xE.
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We now consider the fact that the norm in the space X is equivalent to the energy norm of the problem as

we assumed in (26). Therefore we can take the supremum of the estimate (44) such that the following local

element error estimator:

g2T ðuhÞ ¼ kf þr � j � ruhk2L2ðTÞh2T þ
X

E2S;E�x

1

4
k½nE � j � ruh�k2L2ðEÞhE þ

X
E2S;E�CN

kjN � nE � j � ruhk2L2ðEÞhE

ð46Þ

can be obtained only depending on the computed solution uh and the given data of the problem. Thus we
have shown the a posteriori error estimation

jku� uhkj6 c
X
T2S

g2T ðuhÞ
 !1=2

ð47Þ

for the energy norm of the error which is reliable and computable. The constant c depends mainly on the

smallest angle occurring in the triangulation S [7]. The first term on the RHS of (46) specifies an element

residual with respect to the strong form of the problem. In case there is zero load specified, i.e. no heat source

is present within the structure only the second addend has to be considered. If in addition linear polynomials

are chosen to interpolate the field u, the element residual vanishes completely since second order derivatives

of linear functions are identically zero. The second term describes jumps of the gradient across a given edge
in the domain interior and might be viewed as a measure of the ‘‘smoothness’’ of the solution whereas the last

term considers an error introduced by the deviation of the approximated from the prescribed normal flux

along non-essential boundaries. It can be shown that the error estimator (46) not only is reliable in the sense

of (47), but also efficient which means that it is bounded from above by the real error [7].

5.1. Error analysis for multi-layered plate problems

Within the above framework we are now able to establish an error estimator for composite plate
problems. Therefore we add up the left-hand sides (LHS) of Eqs. (18)–(20) to set up a bilinear form and we

add up the corresponding RHS to form the source terms together with the BCs,

aðU ;VÞ ¼ ðÂ0 : ðruÞS � Â1 : rrwþ ðp̂T � r/Þ0 þ ðâDT Þ0; ðrvÞSÞ � ðÂ1 : ðruÞS

� Â2 : rrwþ ðp̂T � r/Þ1 þ ðâDT Þ1;rrvÞ þ ðp̂ : ðruÞS � zp̂ : rrw� v̂ � r/;rwÞX
þ ðĵ0 � rT ;rSÞx ¼ ðf 0; vÞ � ðf 1;rvÞ þ ðg0; vÞ þ ðM ;rvÞoxbend

þ ðF ; vÞoxshear

þ ðq;wÞX þ ðh;wÞoXel
þ ðf0; SÞx þ ðj0; SÞx

� ð~F;VÞ: ð48Þ

Here we have merged the displacement fields, the electrostatic field and the temperature field into a vector

valued field U ¼ ðu;w;/; T Þ and their variations into V ¼ ðv; v;w; SÞ: The sources and the Neumann BCs

are combined into F. Integration over the 3D domain occurs only where explicitly stated by a subscript

containing X. The appropriate space X in which we have defined the bilinear form is given by

X ¼ fU 2 H 1ðxÞ � H 1ðxÞ � H 2ðxÞ � H 1ðxÞ � H 1ðXÞ; U ¼ 0 on oXg: ð49Þ

The space X characterizes a mechanically fully clamped thin structure together with overall homogenous

essential BCs and thus has to be slightly modified in case we deal with other boundary conditions as follows:

X ¼ fU 2 H 1ðxÞ � H 1ðxÞ � H 2ðxÞ � H 1ðxÞ � H 1ðXÞ; U satisfies all essential BCsg: ð50Þ
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In fact, only the choice of essential boundary conditions effects the shape of X , whereas Neumann or

natural boundary conditions need not to be considered. In order to guarantee the existence of a unique

solution we require the essential part of the boundary to be non-empty. Discretization of the VBVP (48) is
done according to the requirement that the mechanical and the temperature field are interpolated on a 2D

domain whereas the electrical field is interpolated in three dimensions. The domain therefore is subdivided

into a layer of prisms, see Fig. 3. The computed solution, consisting of the set of coupled fields is denoted as

Uh. Applying the estimate (31) to the error of the coupled fields then reads

jkU �Uhkj6 sup
V2X ;jkVkj¼1

aðU �Uh;VÞ ¼ sup
V2X ;jkVkj¼1

ðF � LUh;VÞ; ð51Þ

where the energy norm here is induced by the bilinear-form a,

jkU �Uhkj2 ¼ aðU ;UÞ: ð52Þ

In order to further simplify the exposition we now make the following definitions which incorporate the

computed fields:

ru0 ¼ Â0 : ðruhÞS ; ru1 ¼ Â1 : ðruhÞS ; rP/ ¼ �p̂T � r/h;

DPw ¼ p̂0 : rrwh; rw1 ¼ Â1 : rrwh; rw2 ¼ Â2 : rrwh;

DPu ¼ p̂ : ðruhÞS; DP/ ¼ v̂ � r/h:

ð53Þ

Carrying out steps (36)–(46) yields an error estimation for the fully coupled multi-physical multi-layered

plate structures that, according to (51) satisfies

jkU �Uhkj6 c
X
T2S

g2T ðUhÞ

0
@

1
A

1=2

: ð54Þ

The element error estimator gT ðUhÞ in the same manner as that for the Poisson equation primarily

consists of element residuals that measure the difference of some prescribed sources from the computed

values. Another contribution are the jumps of quantities such as fluxes or bending moments. These
quantities are defined as higher order field derivatives contracted with the corresponding material

tensors. The derivative�s order is the same as that of those describing the Neumann BCs. Finally there

are those contributions which directly measure the deviation of the prescribed Neumann BCs from the

computed values. This means that even though vanishing natural BCs do not need to be considered in

FE-computations the deviations of these zero values from the calculated values usually are a source of

error. This is in contrast to the essential BCs which directly enter the ansatz-space such that these are

always fulfilled and do not contribute to the discretization error. The components of the element error

estimator gT ðUhÞ and their description are displayed in Table 1. The L2-integrations extend over dif-
ferent domains, triangles, triangle edges, prisms, and prism faces abbreviated by T, E, P, F, respec-

tively. Element dimensions h are either triangle diameters and triangle edge lengths hT; hE or prism

diameters and prism face diameters hP; hF.
We shall point out that there are other terms that formally have to be considered. These are those in-

volving the horizontal mechanical body force field that we assume to be zero in our computations. Ad-

ditionally we have neglected terms containing the electrical charge density. Other terms that do not appear

in Table 1 are those containing deviations of computed boundary values from the prescribed. Here we have

restricted the exposition to the most frequently used conditions in practice. Due to the complexity of the



Table 1

Contributions to the element error estimator

Expression Field Description

kr � ðr � rw2Þ � g0k2L2ðTÞh4T ð55Þ w This element residual for single-layer plates, thickness h, consisting of an

isotropic material reads DD2w� g0, D denoting the plate�s flexural
rigidity and D2 the well-known bi-Laplacian operator. It measures the

difference between the bi-Laplacian of the out-of plane displacement field

from some imposed pressure difference or gravitational force

kr � rw1k2L2ðTÞh4T ð56Þ w Measures element residual of forces present when computing mechanical

deformation of structures at least two layers thick

kr � ru1 þ f 0k
2
L2ðTÞh

4
T ð57Þ u Element residual considering the deviation of computed in-plane body

force from the prescribed force f 0

k½n � r � rw2�k2L2ðEÞh3E ð58Þ w Jumps of shear forces across element edges which are unphysical

k½n � rw2�k2L2ðEÞhE ð59Þ w Unphysical jumps of bending moments across element edges

k½n � ru0�k2L2ðEÞh3E ð60Þ u Inter-element jumps of stress resultants

k½n � ru1�k2L2ðEÞhE ð61Þ u Inter-element jumps of in-plane stress resultants, non-zero only for

multi-layer structures that are unsymmetrical to the plate�s mid-plane

k½n � r � ru1�k2L2ðEÞh3E ð62Þ u Jumps of in-plane bending moments

k½n � rw1�k2L2ðEÞh3E ð63Þ w Jumps of bending moments of the flexural field. The second-order

derivatives of w are contracted with the first-order moments of the

elasticity tensor. This contribution is vanishing for single layered

structures

kn � r � rw2 þ F k2L2ðEÞh3E ð64Þ w Deviations of prescribed shear forces on a part of the boundary from the

computed values n � r � ðÂ2 : rrwhÞ

kM � n � rw2k2L2ðEÞhE ð65Þ w Deviations of prescribed bending moments on a part of the boundary

from the computed values n � ðÂ2 : rrwhÞ

kf þr � j � rThk2L2ðTÞh2T ð66Þ T Element residual of the heat source. In case the temperature field is

interpolated with linear Lagrangian elements and the element heat source

is zero this term also will vanish identically

k½n � j � rTh�k2L2ðTÞhE ð67Þ T Jumps of heat fluxes across element boundaries, physically not allowed

kjN � n � j � rThk2L2ðTÞhE ð68Þ T Deviation of prescribed heat flux jN across a part of the boundary from

the computed flux n � j � rTh

kr2D � rP/k2L2ðPÞh5P ð69Þ / Element residuals measuring errors present in the inverse piezoelectric

effect. These contributions are measured on a prism since the electrical

field extends over the whole 3D domain. The term (70) vanishes

identically since for the electrostatic potential linear interpolation

functions are used and second-order derivatives applied on them are

identically zero

kr2D � ðr2D � zrP/Þk2L2ðPÞh5P ð70Þ

kr3D �DPuk2L2ðPÞh2P ð71Þ Element residuals in the direct piezoelectric effect. Although both

displacement fields are defined on a 2D domain integration takes place

over the full 3D domain. See (19) or (49)

kr3D � zDPwk2L2ðPÞh2P ð72Þ w
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Table 1 (continued)

Expression Field Description

k½n2D � rP/�k2L2ðFÞh4F ð73Þ Jumps of stresses caused by the inverse piezoelectric effect across

element boundaries. These are measured along a prism�s
rectangular face. Note that the piezoelectric tensor p̂ may vary

through the thickness of the layer as well as the electrostatic

potential

k½n2D � zrP/�k2L2ðFÞh2F ð74Þ /

k½n2D � r2D � zrP/�k2L2ðFÞh2F ð75Þ

k½n3D �DPu�k2L2ðFÞh2F ð76Þ u Inter element jumps of the dielectric displacement present in the direct

piezoelectric effect caused by the in-plane displacement field

k½n3D � zDPw�k2L2ðFÞhF ð77Þ w Inter element jumps of the dielectric displacement present in the direct

piezoelectric effect caused by the out-of-plane displacement field

k½n3D � zDP/�k2L2ðFÞhF ð78Þ / Jumps of the dielectric displacement caused by the electrical field itself
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thin structure model equations the number of contributing terms is high and reducing the error to the most

significant contributions is the subject of current and future investigations.

Alternatively, it might be worthwhile investigating whether different types of error estimators, such as,
for example, the gradient recovery based error estimator of Zienkiewicz and Zhu [6] (known for its reli-

ability and efficiency and its easy way to be implemented) perform as well as ours and that possibly at a far

lesser cost of implementation. In that case we would like to emphasize that for our equations not only

gradients but also second order derivatives would have to be recovered. The presence of the coupling effects

and the multi-layered and multi-physical nature of the structure will add further implementation and

computational cost to a possible recovery based error estimator. Finally we want to point out that in

certain cases its use is known to fail [9] and some caution must be applied.
6. Refinement strategy and split patterns

From heuristic arguments we know that among all partitions of a linear finite element discretization,

that one is optimal which equilibrates the error i.e., the errors in all elements should be made equal to or

less than the required maximum required error. Among others, the most popular realization is called the

maximum strategy and is done in the following manner [24].

Suppose that for a given mesh a solution and an error estimator gT for each element T have been
computed. Put g � maxT2S gT and split an element T if gT P ng, where n is a prescribed threshold,

0 < n < 1. This strategy, applied iteratively, would continue indefinitely. A halting condition is straight-

forward to add: stop if g6 gaccept:
We have used a value of n ¼ 0:5 in all of the subsequently presented examples and the number of re-

finement cycles is determined such that in the very last step of the refinement cycle the predefined error

threshold, a fraction of the error obtained in the initial step, is met.

The way in which the refinement process is performed, from a geometrical point of view, depends on the

kind of elements present in the mesh. Difficulties arise from keeping shape regularity and from handling
hanging nodes. Many rules have been established for the splitting of simplicial mesh constituents, such as,

e.g. the ‘‘red’’, ‘‘green’’ or ‘‘blue’’ refinement for triangles. We use a recursive algorithm for triangles which

is based on the longest edge bisection, see Fig. 5. It has been shown that only a finite number of different

angles occur during the refinement process and therefore shape regularity is guaranteed [36,37]. The al-

gorithm to recursively refine a triangular element is:
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Fig. 5. The elementary mesh at the left consists of four triangles. The shaded triangle is marked to be split along its longest edge. The

longest edges of each triangle are marked by thick lines in the center figure. The dashed lines at the right show how the recursive

bisection algorithm produces new triangles, continuing through the neighborhood until a first edge can be split (in the worst case, this

happens only when the boundary edge is reached), then backtracking. The boxed numbers label the order in which new edges are

introduced on the return path of the recursive algorithm.
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1.0 do until the neighbor has a compatible refinement-edge:

1.1 if the neighbor has a non-compatible refinement-edge:

1.1.1 recursive refine the neighbor.

2.0 bisect both triangles at the refinement-edge. Compatibility is given if the neighbor element�s longest

edge is at the same time the longest edge of the target element or is a part of the boundary. The ter-

minating recursive algorithm modifies the vicinity of the target element until its edge can be split as

sketched in Fig. 5.

Although there are alternatives to this approach, such as the constraint Delaunay method [38] or the
advancing front approach [39] our method carries the advantage of allowing the mesh to be represented

within the hierarchic computational data structure of binary trees. Unique element data, such as

material properties can be fast and easily transferred onto the refined mesh during the computing

process.
7. Validation

We demonstrate the performance of our method on selected examples from microsystem technology

(MEMS). The following example is more general and serves to demonstrate the efficiency and reliability of

the error estimator. For an L-shaped polygon, as depicted in Fig. 6, the solution to the Laplace equation,

the third equation of (8), is sought, with Dirichlet BCs T ¼ 0 on the bottom at y ¼ 0; and on the upper right

boundary T ¼ 1 at x ¼ 1.

The analytical solution that coincides with the weak solution can be obtained via the well known

Schwarz–Christoffel transformation [40], that numerically is carried out by the tool matlab [41]. We

compare the absolute (i.e. exact) error T � Th for two different situations during the refinement process. In
the first case the approximate solution Th is obtained by successive adaptive refinement according to the

algorithms described earlier in this article. In the second case the approximate solution is obtained by a FE-

analysis on meshes where all elements are of the same size and in each step the number of elements is

uniformly increased. On the left side in Fig. 6 the final meshes of both procedures are shown, together with

the isothermal lines of the approximated temperature field. The initial mesh is the same in both cases. In the

graph on the bottom right the absolute errors are compared for different mesh sizes. For meshes that

feature the same number of elements, the absolute error of the approximate fields are considerably higher

for the uniform mesh. The estimated error according to Eq. (46) is also shown in the graph. The horizontal
arrow in the figure demonstrates the high level of efficiency of the adaptive method in the sense that a more

accurate solution can be obtained with a smaller mesh and hence smaller amount of computational effort.



Fig. 6. Uniform and adaptive thermal FE-analysis for an L-shaped domain.
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This observation can be further substantiated. When assessing the performance of an error estimator,

one very important parameter that can be computed is the effectivity index [42,43]. It is the ratio of the

estimated error and the true error and can be expressed as

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

T2S g
2
T

p
jku� uhkj

; ð79Þ

gT denoting the elementwise defined error estimator. Ideally, when the estimated error coincides with the

exact error, this ratio should be equal to one. In our case, however, and according to inequality (54), we can
expect the effectivity index to converge to some constant c. Fig. 7 depicts the value of s along with the

estimated error and the exact exact error during the refinement process. The ratio can, within bounds, be

considered to represent some constant value and hence some confidence is given that the error estimator

can be trusted when being applied to problems where analytical solutions are not accessible.

Another very important index that reflects the performance and efficiency of the refinement scheme

employed is the rate of convergence of the error norm of the solution, see for example, [44]. In general, the

error norm of the solution is reduced at a given rate p,

ku� uhkm 6 chp; p ¼ k þ 1� m > 0; ð80Þ

where 2m is the PDE order and k � km accordingly is the Hm-norm of the error. c is a constant and k is the
polynomial order of the interpolation functions. This estimate implies that the error goes to zero at the pth
power of h as h is decreased. However, such optimal convergence rate will be reduced in the presence of



 2

-2

-4

-6

Log(Energy Norm of Error)

Log(h)

exact adaptive

effectivity index
estimated error

 2.5 3 3.5 4 4.5

exact adaptive

estimated error

exact  uniform

Log(Energy Norm of Error)

-4 

-3

 -2

 -5

 2.5 3 3.5 4 4.5

1
0.8

Log(h)

Fig. 7. Effectivity index (left) and convergence rate for the L-shaped domain with linear triangles and the residual error estimator.
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singularities such as the re-entrant corner in the example above. An adaptive refinement scheme is said to be

effective if it can eliminate the effect of the singularity and restore the optimal convergence rate.

According to (80), the negative logarithm of the error in the energy norm (m ¼ k ¼ 1, p ¼ 1 in our

example, the energy norm then is equivalent to the H 1-norm) versus the negative logarithm of h (in our case

expressed in terms of 1=
ffiffiffiffiffiffiffiffiffiffiffi
DOF

p
, DOF denoting the number of degrees of freedom) is a straight line whose

slope is �p. The optimal convergence rate in our case therefore is, expressed in terms of the slope, �1. In

Fig. 7 we observe, due to the presence of the singularity, that the slope corresponding to the uniform re-

finement does not reach the optimal convergence rate. The adaptive refinement scheme, on the other hand,
converges at a rate which is close to one and therefore represents strong support for our adaptive refine-

ment scheme.
8. Applications

We have applied these simulation techniques to various multi-physically active thin structures most

widely used in MEMS. The simulation requirements range from elementary thermal and pure mechanical
analysis to the analysis of thermo-mechanically or piezoelectrically driven devices. Technical aspects of the

devices considered can be found in [45,46] and the references therein.

8.1. Thermal structures

As a first application we consider a flat plate consisting of two different material stacks, as sketched in

Fig. 8. Typically such structures are used to realize resonant beams as implemented in gas-sensors or atomic

force microscope probes [47] or [48]. The gray region consists of polysilicon on a silicon oxide layer while
the other part only consists of a silicon oxide layer. The polysilicon part is heated at a rate of 6e13 (W/m3),

resulting in a temperature distribution according to the BCs specified. We have assumed that the structure

is in contact with a heat reservoir at the right end and is thermally isolated on the rest of the boundary. The

adaptive simulation procedure starts with an initial coarse mesh also displayed in Fig. 8. The reduction of

the estimated error is shown in Fig. 9 by means of the only two contributions to the elements� errors: the
jumps of the heat flux across element edges together with boundary inconsistencies of the heat flux (67) and

(68) and the element residuals (66). The total estimated error is computed using (47), first summing up the

partial contributions to one element error and then summing over the whole mesh. We shall emphasize that
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Fig. 9. Logarithmic plot of the only two error contributions present when calculating the temperature distribution in the absence of the

other fields. The contribution arising from unphysical jumps of the heat fluxes across element boundaries together with the inaccuracies

at the Neumann boundary is higher than the element residuals. The RHS figure depicts the spatial distribution of the jump errors after

12 refinement cycles. The bright areas denote low error values.

90°C

0°C

50 µ

30 µ

6e13 (W/m  )3

thickness: 2  µ

heat source

Fig. 8. Mesh and geometry used to compute the initial temperature distribution (left). The right-hand side graphics shows the tem-

perature distribution computed after eleven refinement steps. For clarity half of the underlying mesh has been removed. The major

refinement occurs near the corners where different material stacks meet. The thick-lined boundary indicates contact with a heat res-

ervoir whereas the remaining part of the boundary is thermally isolated.
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the element residual contribution is only present within the heated subdomain since we have interpolated

the temperature field by linear elements such that for zero source function the term (66) vanishes. As can be

seen in Fig. 8 the major refinement takes place near the corners where different material stacks meet. The
nature of these singular points are a combination of the contact of different materials and the wedge-corner

singularity, see Section 7, as is well known from early FE-analysis [49].

8.2. Thermo-mechanical structures

In the second example we consider a multi-layered thin structure typical in MEMS used for the detection

and the generation of ultrasound such as, for example in [50]. It consists of a silicon oxide and aluminum

layer on the outer region, each 0.5 lm thick, and with a lateral dimension of 200 lm as depicted in Fig. 10.
The center region is partly covered by a polysilicon layer and serves as a heater. The excitation principle of

this device is that energy is dissipated in the polysilicon layer. The heating causes the structure to deform

and thanks to the multi-layer arrangement (multimorph) there is, besides the thermal expansion in hori-

zontal direction, a 3D bending of the structure, also presented in Fig. 10. We have simulated the thermo-
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Fig. 11. Errors caused by numerical inaccuracies present in the thermal part of the coupled thermo-mechanical thin plate problem.

Dominant in this example are the element residuals describing the deviation of the computed heat force from the one that is prescribed.

This contribution is also displayed as a 2D distribution on the right. The brighter the shade is the lower is the error value. The total

estimated error approximately coincides with the dominant contribution and therefore is not declared separately.

300K

0K
200µ

Fig. 10. Exaggerated mechanical deformation computed on a refined grid after 12 refinement cycles. The structure is mechanically

clamped on each side. The RHS figure shows a contour plot of the out-of-plane displacement field computed on the same refined mesh.
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mechanical behavior starting with a coarse mesh consisting of 16 elements. The numerical solution then is

improved in a cycle of 12 steps according to the error reduction plotted in Figs. 11 and 12. The dominant

contribution to the total estimated error are the element residuals describing the deviation of the computed
heat generation rate from the prescribed. The mechanical errors in this example are much smaller. Nev-

ertheless, other structural configurations may result in a different weighting of each contribution. As far as

the mechanical contribution is concerned, the membrane field, in this particular case, exhibits higher errors

than the bending field, see Fig. 12.

The membrane field errors are dominated by element residuals considering in-plane body forces that

should physically not be present. Smaller are inter-element jumps of stress resultants and in-plane bending

moments. The errors caused by the bending field are highest for the inner element shear forces associated

with the first order moments of the elasticity tensor, hereby taking into account that the coupling effect of
the horizontal and the vertical displacement field is present since the structure is multi-layered. The thermal

element residuals that dominate the estimated error are highest near the center of each boundary line,

causing the major refinement to be performed in these regions, see Fig. 11.

8.3. Piezoelectric structures

The third application uses a piezoelectric driving mechanism. Transducers of that kind are reported of in

[51]. Among others, the working principle might be that of a pressure sensor or that of a pump when used
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Fig. 12. Mechanical contributions to the total error of the thermo-mechanical problem. The lower left figure shows the reduction of

the errors caused by inaccuracies of the computed membrane field. The dominant contributions are those involving the deviation of

computed in-plane body force from the one that is prescribed (2D distribution shown above). The minor contributions are those which

arise due to the coupling of the in-plane and the out-of-plane displacement field. They are only present where the structure is multi-

layered. The figure on the lower right depicts the errors caused by the bending field. Here, the largest values (2D distribution shown

above) are computed using the first order moments of the elasticity tensor and thus are related to the coupling of the fields. Both the

membrane and bending errors are minor to the errors present in the temperature field.
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as an actuator. The thin structure here consists of a ground layer and a piezoelectric layer and is actuated by

a potential difference. The potential is applied on the bottom and the top of the structure as sketched in

Fig. 3 and therefore evokes a mechanical displacement according to the direct piezoelectric effect. In Fig. 13

we have displayed the complete bending behavior computed on an adapted mesh as well as the y-com-

ponent of the membrane field.
We have used a PZT-4 layer as the piezoelectrically active material. PZT-4 belongs to the 6 mm crystal

class such as, for example, ZnO. The unreduced, 3D piezoelectric charge constants d, given in units of C=N ,

see Appendix B, have the form

d ¼
0 0 0 0 d15 0

0 0 0 d15 0 0
d31 d31 d33 0 0 0

0
@

1
A; ð81Þ



0.4µ

0.4µ-clamped edge

Fig. 13. Exaggerated deflection of the piezo-flap (left) and y-component of the horizontal displacement field (right). The structure has a

clamped edge on its left boundary whereas the remaining part is mechanically free. The flap is driven by a voltage of 100 V in vertical

direction. For clarity we have omitted a part of the underlying mesh.
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where we have used the engineering notation for the last two indices of the third rank piezo-tensor. When

also taking into account the numbers of non-zero and independent elastic coefficients for the crystal class
under consideration, the tensor reduction yields a piezoelectric tensor that only has two independent

components, which finally turn out to be identical since the relevant components of the reduced elastic

tensor are also identical, A11 ¼ A22, and therefore,

p̂ ¼
0 0 0

0 0 0
d31ðA22 þ A21Þ d31ðA21 þ A22Þ 0

0
@

1
A: ð82Þ

Errors are biggest where the piezoelectric layer is located and at the layer stack interface. In this region,
as can be seen in Fig. 15, the major mesh refinement occurs. Exemplarily we have displayed one mechanical

contribution to the global error in Fig. 14. There, the elementwise distribution of inner element shear forces,

kr � rw1k2L2ðTÞh4T; ð83Þ
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Fig. 14. The mechanical membrane contributions (left) and error contributions due to the direct and inverse piezoelectric effect and the

pure electrostatic terms (right) to the overall error estimator. For the in-plane displacement field only two types of errors have sig-

nificant values. The dominant error in this example are element residuals caused by the inverse piezoelectric effect.
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Fig. 15. The contributions of the bending field are highest for the element shear force residuals caused by the presence of a multi-

layered structure and lowest for the jumps of the bending moments across element edges and the electrostatic contribution. The RHS

shows the distribution of the largest pure mechanical error associated to the bending field in the seventh refinement cycle. These are

inner element shear forces that physically are not allowed to exist. They are highest (dark) in the vicinity of the piezoelectrically active

layer.
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is displayed. These forces physically are not allowed to exist and are sought to be minimized during the re-

finement process. The contributions due to the residual stresses (69) caused by the inverse piezoelectric effect

kr2D � rP/k2L2ðPÞh5P ð84Þ

are the principal contributions in this example. The other contributions that are related to the inverse
piezoelectric effect are much smaller but may become considerably weightier when boundary conditions,

material properties, structure thicknesses or loads are varied. The contributions of the direct piezoelectric

effect are identically zero in the case we deal with the hexagonal crystal symmetry class 6 mm. The error

contributions due to the direct piezoelectric effect are of the general shape, see (71), (72), (76) and (77),

kN3D � p̂ � tk ¼ kN3D � p̂iabtabk; ð85Þ

where N3D either denotes the 3D divergence operator or the 3D face normal vector. Derivatives of the in-

plane or the out-of-plane displacement fields are abbreviated by tab with the common two-index notation

[20], greek indices ranging from one to two, latin indices ranging from one to three. Then, since the only

non-vanishing components of p̂ are in its last row, (85) is zero for two possible reasons: either the prism�s
horizontal face normal�s z-component vanishes or the electrical displacement p̂iabtab does not depend on the

z-coordinate and thus its partial derivative represented by the operator N3D vanishes identically.
9. Summary and conclusions

We have presented a method with which we can accurately simulate the structural behavior of

thermo-mechanically and piezoelectrically driven multi-layer thin structures. Based on the Kirchhoff–
Love plate theory a thin structure finite element model has been presented which not only covers the

multi-physical nature of the structures but also takes into account horizontal and transversal anisotropy

of the structures. For this thin structure model we applied residual error estimation techniques in order

to get a local information about the error distribution in the energy norm. The single contributions to

the total element error turn out to be of various nature. The contributions that are persistently present
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when only considering the purely mechanical behavior are inner element residuals of forces and jumps

of shear forces and bending moments. There are in addition those contributions which arise when the

structure is multi-layered. The magnitude of each of these contributions varies according to the spec-
ified loads and material parameters. We have shown how these different contributions influence the way

in which the mesh is refined. The reduction of the estimated energy error proves the reliability of the

theoretically-derived error estimator.

A maximum refinement strategy is used for all meshes treated. A recursive algorithm is used to split the

triangular elements in order to preserve shape regularity and to avoid hanging nodes. Several thin struc-

tures relevant in micro-devices serve as examples where the mesh adaptivity is demonstrated. Regions inside

the structures, which are critical in the sense of structural singularities, are clearly identified by the method

and accordingly refined such that the overall error is reduced to a minimum. By specifying the physical
nature and the magnitude of the single error contributions a deeper insight into finite element simulation

and the related errors is provided.

Future investigations will consider the implementation of other thin-structure models such as the

Mindlin–Reissner model that in conjunction with a multi physical environment and together with improved

finite element adaptivity may lead to enhanced simulation performance.
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Appendix A. Tensor operations

In this paper, we confine ourselves to the common notation for quantities that in the engineering lan-

guage are denoted as tensors. The operations come in a handy size when using the notation of [52]:
Operation/Function space Definition

Contraction ðA � BÞi���jl���m ¼
P

k Ai���jkBkl���m
Double contraction ðA : BÞi���jm���n ¼

P
kl Ai���jklBklm���n

Tensor product ðABÞi���jk���l ¼
P

kl Ai���jBk���l
Transposition ðAT Þij ¼ Aji

Symmetrization ðASÞij ¼ ðAij þ AjiÞ=2
Gradient ðrAÞij���k ¼ oAj���k ¼ Aj���k;i
Divergence ðr � AÞj���k ¼

P
i oAij���k ¼

P
i Aij���k;i

L2ðXÞ-inner product
R
X

P
i���j Ai���jBi���j dx

Sobolev space of order m HmðXÞ ¼ fu : Dau 2 L2ðXÞ for all a such that jaj6mg
Appendix B. Tensor reduction for plates

For reasons of symmetry, the stress tensor has only six independent components [25] that can be ar-

ranged into two three-dimensional vectors
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r1 ¼
r1

r2

r6

0
@

1
A; r2 ¼

r3

r4

r5

0
@

1
A: ðB:1Þ

Also for the strain, its six independent components can be arranged into two 3D vectors

�1 ¼
�1
�2
�6

0
@

1
A; �2 ¼

�3
�4
�5

0
@

1
A: ðB:2Þ

Consequently, the 21 independent components of the elastic tensor can be arranged into four 3D matrices

C11 ¼
C11 C12 C16

C21 C22 C26

C61 C62 C66

0
B@

1
CA; C12 ¼

C13 C14 C15

C23 C24 C25

C63 C64 C65

0
B@

1
CA;

C21 ¼
C31 C32 C36

C41 C42 C46

C51 C52 C56

0
B@

1
CA; C12 ¼

C33 C34 C35

C43 C44 C45

C53 C54 C55

0
B@

1
CA;

ðB:3Þ

relating the vectors ri with the vectors �j:

r1

r2

� �
¼ C11 C12

C21 C22

� �
�1
�2

� �
: ðB:4Þ

When introducing the piezoelectric charge constants d ¼ ðd̂1 d̂1Þ (unit C=N ¼ m=V) as

d1 ¼
d11 d12 d16
d21 d22 d26
d61 d62 d66

0
@

1
A; d2 ¼

d13 d14 d15
d23 d24 d25
d63 d64 d65

0
@

1
A; ðB:5Þ

the stress then is given in terms of

r1

r2

� �
¼ C11 C12

C21 C22

� �
�1
�2

� ��
� d̂T

1

d̂T
2

� �
E

	
: ðB:6Þ

The relation for the plane stress when applying the Kirchhoff–Love condition [15] then reads

r1 ¼ ð�1 � d̂1EÞ � Â : �� p̂T � E ðB:7Þ

having defined the reduced piezo tensor as

p̂T ¼ Â � d̂T
1 ; ðB:8Þ

Â being the reduced elasticity tensor,

Â ¼ C11 � C12C
�1
22 C21: ðB:9Þ

The equation for the electrical displacement uses reduced quantities, too:

D ¼ ðd̂1 d̂1Þ
C11 C12

C21 C22

� �
�1
�2

� �
þ vE; ðB:10Þ
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where the piezoelectric charge constants are related to the piezoelectric stress coefficients p by

p ¼ d : C : ðB:11Þ

Introducing the relation for the strain �2 obtained from (B.6) by the requirement that r2 vanishes, turns
(B.10) into

D ¼ ðd̂1 d̂1Þ
C11 C12

C21 C22

� �
�1

ðC�1
22 C21d̂

T
1 þ d̂T

2 ÞE � C�1
22 C21�1

� �
þ vE ðB:12Þ

such that the dependence is only on �1. Further calculation yields

D ¼ d̂1Â�1 � d̂1C12d̂
T
2E � d̂1ðC11 � ÂÞd̂T

1E þ ðd̂2C22d̂
T
2 þ d̂2C21d̂

T
1 ÞE þ vE ðB:13Þ

which, when defining

v̂ � ðd̂2C22d̂
T
2 þ d̂2C21d̂

T
1 Þ � ðd̂1C12d̂

T
2 þ d̂1ðC11 � ÂÞd̂T

1 Þ þ v ðB:14Þ

can be recast into

D ¼ p̂ � �þ v̂ � E: ðB:15Þ

A similar relation holds for thermally induced stresses.
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